Search results for "conductive polymer"

showing 10 items of 112 documents

The Role of Emission Layer Morphology on the Enhanced Performance of Light-Emitting Diodes Based on Quantum Dot-Semiconducting Polymer Hybrids

2016

The influence of the morphology of quantum dot (QD)-semiconducting polymer hybrid emission layers on the performance of quantum dot-based light emitting diodes (QLEDs) is systematically investigated. Chemically grafted QD-semiconducting polymer hybrids are fabricated by the ligand exchange procedure between CdSe/CdxZn1−xS QDs and a new block copolymer consisting of a carbazole-based electroactive block with a low highest occupied molecular orbital level and a disulfide-based anchor block. The performance of QLEDs with hybrid emission layers is compared with QLEDs utilizing QD-only and physically mixed QD/polymer emission layers. It is shown that only in the emission layers formed by chemica…

chemistry.chemical_classificationConductive polymerMaterials sciencebusiness.industryCarbazoleMechanical Engineering02 engineering and technologyPolymer010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical scienceslaw.inventionchemistry.chemical_compoundchemistryMechanics of MaterialsQuantum dotlawOptoelectronicsQuantum efficiency0210 nano-technologybusinessHybrid materialHOMO/LUMOLight-emitting diodeAdvanced Materials Interfaces
researchProduct

An approach to the electrochemical activity of poly-(phenothiazines) by complementary electrochemical impedance spectroscopy and Vis–NIR spectroscopy

2010

Abstract The electroactivity of two poly-(phenothiazine), the poly-(Azure A) and the poly-(Methylene Blue), has been compared in this work. The spectroelectrochemical results prove clearly the existence of two electroactive moieties integrated in the polymeric lattice, the phenothiazine ring (detected by changes of absorbance at 590 and 685 nm) and the newly formed covalent links which fixes the monomers in the backbone of the polymer (detected by changes of absorbance at 460 and 875 nm). Differences in the electrochemical response of both polymers are due to differences in this covalent link. However in both polymers, the charge balance during electrochemical reactions takes place by the e…

Conductive polymerGeneral Chemical EngineeringAnalytical chemistryInfrared spectroscopyIonic bondingAzure APhotochemistryDielectric spectroscopyAbsorbancechemistry.chemical_compoundchemistryPhenothiazineElectrochemistryMoleculeElectrochimica Acta
researchProduct

Polymer-based symmetric electrochromic devices

1999

Abstract The fact that conjugated polymers repeatedly undergo electrochemical doping/undoping processes, which are accompained by color changes, makes these materials very attractive, and much effort has been devoted to their use in advanced devices. There is renewed interest in electroactive polymers that reversibly undergo both p- and n-doping because of their potential application in symmetric electrochemical devices. We employed fused molecules, dithienothiophenes, as monomers to obtain polymers with a narrow band gap suitable for n- and p-doping. The performance results of two symmetric electrochromic devices having as electrodes both poly(dithieno[3,4-b:3',4'-d]thiophene) (pDTT1) and …

Conductive polymerchemistry.chemical_classificationMaterials scienceRenewable Energy Sustainability and the EnvironmentDopingNanotechnologyPolymerConjugated systemElectrochromic devicesSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundMonomerchemistryThiopheneElectroactive polymersOrganic chemistrySolar Energy Materials and Solar Cells
researchProduct

Structural control of mixed ionic and electronic transport in conducting polymers

2016

Poly(3,4-ethylenedioxythiophene) doped with poly(styrenesulfonate), PEDOT:PSS, has been utilized for over two decades as a stable, solution-processable hole conductor. While its hole transport properties have been the subject of intense investigation, recent work has turned to PEDOT:PSS as a mixed ionic/electronic conductor in applications including bioelectronics, energy storage and management, and soft robotics. Conducting polymers can efficiently transport both holes and ions when sufficiently hydrated, however, little is known about the role of morphology on mixed conduction. Here, we show that bulk ionic and electronic mobilities are simultaneously affected by processing-induced change…

Conductive polymerOrganic electronics0306 Physical Chemistry (incl. Structural)BioelectronicsMultidisciplinaryMaterials scienceScienceDopingQGeneral Physics and AstronomyIonic bondingNanotechnology02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesGeneral Biochemistry Genetics and Molecular BiologyArticle0104 chemical sciencesIonPEDOT:PSSNano-0210 nano-technology0912 Materials EngineeringNature Communications
researchProduct

Bulk heterojunctions by boramers for plastic photovoltaics

2009

Organic semiconductors conductive polymers plastic solar cells thin films bulk heterojunctions
researchProduct

Functional Hybrid Materials Containing Polypyrrole and Polyoxometalate Clusters: Searching for High Conductivities and Specific Charges

2002

chemistry.chemical_classificationConductive polymerMaterials scienceElectrochemical polymerizationInorganic chemistryPolymerPolypyrroleElectrochemistryAtomic and Molecular Physics and Opticschemistry.chemical_compoundchemistryChemical engineeringElectrical resistivity and conductivityPolyoxometalatePhysical and Theoretical ChemistryHybrid materialChemPhysChem
researchProduct

Composite Polymer Electrolytes with Improved Lithium Metal Electrode Interfacial Properties: I. Elechtrochemical Properties of Dry PEO‐LiX Systems

1998

Several types of lithium ion conducting polymer electrolytes have been synthesized by hot-pressing homogeneous mixtures of the components, namely, poly(ethylene oxide) (PEO) as the polymer matrix, lithium trifluoromethane sulfonate (LiCF{sub 3}SO{sub 3}), and lithium tetrafluoroborate (LiBF{sub 4}), respectively, as the lithium salt, and lithium gamma-aluminate {gamma}-LiAlO{sub 2}, as a ceramic filler. This preparation procedure avoids any step including liquids so that plasticizer-free, composite polymer electrolytes can be obtained. These electrolyte have enhanced electrochemical properties, such as an ionic conductivity of the order of 10{sup {minus}4} S/cm at 80--90 C and an anodic bre…

Conductive polymerMaterials scienceRenewable Energy Sustainability and the EnvironmentInorganic chemistryLithium tetrafluoroboratechemistry.chemical_elementElectrolyteCondensed Matter PhysicsElectrochemistryLithium aluminateSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialschemistry.chemical_compoundchemistryMaterials ChemistryElectrochemistryFast ion conductorIonic conductivityLithiumJournal of The Electrochemical Society
researchProduct

Light induced electropolymerization of poly(3,4-ethylenedioxythiophene) on niobium oxide

2010

Abstract The photoelectrochemical polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, was successfully realized on anodic film grown to 50 V on magnetron sputtered niobium. Photocurrent Spectroscopy was employed to study the optical properties of Nb/Nb 2 O 5 /PEDOT/electrolyte interface in a large range of potential, and to get an estimate of the band gap and flat band potential of both the oxide and the polymer. Scanning Electron Microscopy was used to study the morphology of PEDOT. Both the optical and morphological features of the photoelectrochemically grown polymer were compared with those showed by PEDOT electropolymerized on gold conducting substrate.

Conductive polymerPhotocurrentMaterials scienceBand gapGeneral Chemical EngineeringPhotoelectrochemistryInorganic chemistryOxidephoto-electropolymerization poly(34-ethylenedioxythiophene) niobium oxidechemistry.chemical_compoundSettore ING-IND/23 - Chimica Fisica ApplicatachemistryPEDOT:PSSChemical engineeringBand gap Niobium oxide PEDOT PhotoelectrochemistryElectrochemistryNiobium oxidePoly(34-ethylenedioxythiophene)Electrochimica Acta
researchProduct

Self-organized nanostructures of poly(4-vinylpyridine), polyaniline and polyamides due to metal complexation

2002

Comb-shaped supramolecules are constructed using flexible polymers and semi-rigid conjugated undoped or doped conjugated polymers upon complexing Zinc dodecyl benzene sulphonate, Zn(DBS) 2 . Self-organized nanostructures are formed in the bulk due to competing attractive interactions (coordination or water mediated hydrogen bonding) and repulsive polar/nonpolar interactions, showing characteristic long periods of ca. 30 A.

chemistry.chemical_classificationConductive polymerCOORDINATIONMaterials sciencePolymers and PlasticsHydrogen bondOrganic Chemistrychemistry.chemical_elementZincPolymerConjugated systemCondensed Matter PhysicsMetalchemistry.chemical_compoundchemistrySUPRAMOLECULAR POLYMERIC MATERIALSSYSTEMSvisual_artPolyanilinePolymer chemistryPolyamideComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMaterials Chemistryvisual_art.visual_art_mediumGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Macromolecular Symposia
researchProduct

Electroactive polymeric material with condensed structure on the basis of magnesium(II) polyporphine

2011

International audience; Previous publication of the authors presented evidences that electroch emical oxidation of Mg(II) porphine (fully unsubstituted porphyrin, MgP) in acetonitrile (AN) at a very low potential leads to deposition of films at electrode surface corresponding to typical electroactive polymers, with their reversible transition betwee n the electronconducting and insulating states depending on the electrode potential/oxidation level ("film of type I"). It is demonstrated in the actual publication that these films in contact with a monomer-free solution are subject to an irreversible transformation to quite a different material ("film of type II") under the influence of a high…

General Chemical EngineeringAnalytical chemistryInfrared spectroscopy02 engineering and technology010402 general chemistryElectrochemistry01 natural scienceschemistry.chemical_compoundTransition metalX-ray photoelectron spectroscopy[CHIM.ANAL]Chemical Sciences/Analytical chemistryelectroactive materialsElectrochemistryMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryconducting polymermagnesium porphineConductive polymer[CHIM.ORGA]Chemical Sciences/Organic chemistryelectropolymerization[CHIM.MATE]Chemical Sciences/Material chemistry021001 nanoscience & nanotechnology0104 chemical sciencesMonomerchemistryPhysical chemistryC-C coupling0210 nano-technologyunsubstituted porphyrinElectrode potentialElectrochimica Acta
researchProduct